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Electron-nuclear double resonance of interstitial chromium in silicon
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(Received 29 December 1986)

The positively charged state of interstitial chromium in silicon was investigated using electron-
nuclear double resonance. We have found the hyperfine interaction of the impurity electrons with
nine shells of surrounding silicon neighbors containing 102 atoms. The well-resolved fine structure
due to the cubic-field splitting for chromium made it possible to determine the absolute signs of
the measured hyperfine interaction parameters. The results are analyzed using a linear combina-
tion of atomic orbitals treatment that takes into account the spin S =% of the impurity and the
symmetry of the atomic orbitals centered at the ligands for the different shells. This analysis re-
sults in a spin density that is transferred from the impurity to the host crystal of at least 22%.
The apparent contradiction between the reduced core polarization (indicating a delocalization of
some 52% of the impurity wave function) and the absence of large hyperfine interactions with the
silicon ligands is hereby resolved. Our results are compared with those obtained for the positively
charged state of interstitial titanium and neutral interstitial iron. It appears that the electronic
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structure of chromium is similar to that of titanium.

I. INTRODUCTION

Chromium is one of the 3d transition-metal impurity

atoms in silicon that was for the first time observed with
electron paramagnetic resonance (EPR) by Woodbury
and Ludwig."? The other observed 3d transition metals
were V, Mn, Fe, and Ni, sometimes in different charge
states according to the n- or p-type doping level of the
samples.> A few years ago also the positively charged
state of interstitial titanium was found.* .

It is well established now that all the 3d transition
metals diffuse interstitially and that Ti, V, Cr, Mn, and
Fe occupy isolated interstitial sites upon quenching from
high temperature.

“On the basis of their experiments, Ludwig and Wood-
bury developed a highly successful model to account for
the observed effective spin and g values of the 3d transi-
tion metals in silicon. According to their model the in-
troduction of a 3d metal on an interstitial site with
tetrahedral symmetry causes a splitting of the atomic d
levels in a threefold-degenerate ¢, and a twofold-
degenerate e state (excluding spin); the e state lies higher
in energy than the ¢, state. These levels are filled ac-
cording to Hund’s rule. Finally, the 4s electrons are not
used for bonding to the silicon nearest neighbors, and
are transferred to the 3d shell.

For Cr;*, which has the configuration 3d°, this leads
to a t3e? (54,) state. The existence of a donor level has
been proved by EPR observations of Cr;° and Cr;*, Hall
effect, resistivity measurements,”® and with deep-level
transient spectroscopy (DLTS).” From these experi-
ments the donor level Cr;%/* was established to lie at
E,—0.22¢eV.

The EPR data of Ludwig and Woodbury immediately
posed a contradiction. The observed hyperfine interac-
tion between the 3d electrons and the impurity nucleus
is smaller than was calculated for the free Cr;* ion.}
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From this reduction a rather large delocalization of the
3d wave functions, resulting in large hyperfine interac-
tions with the silicon ligands, would be expected. How-
ever, no large hyperfine interactions are resolved in
EPR. Since a few years ago, there has been a renewed
interest in this problem both from theoretical’®~!'* and
experimental points of view.!>~17

We have performed electron-nuclear double-resonance
(ENDOR) experiments in silicon containing Cr;¥,
resolving the hyperfine interaction between the impurity
electrons and 102 silicon atoms in nine shells surround-
ing the chromium. )

In Sec. II we will give an outline of the experimental
procedure; in Sec. III the experimental results are
presented, which are discussed in Sec. IV. Conclusions
are summarized in Sec. V.
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FIG. 1. Recorder trace of an ENDOR spectrum. The mag-
netic field is B=2826.830 mT and is parallel to [110]. The mi-
crowave frequency was 23.1239 GHz. Shown are resonances
for the interaction tensors G1 and M3. The resonances are

arising from NMR transitions between the levels | —1,+ 1)
and | —3,—1), observed on EPR transition | +1)«| —1).
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II. EXPERIMENTAL PROCEDURE

Samples containing Cr; * were prepared by coating sil-
icon bars (dimensions 2X2X20 mm?) do?ed with boron
([B]~0.8x10'-1.8%x10'® atomscm™), aluminum
([A1]~2X 10" atoms cm~3), or gallium ([Ga]~1.0X 10'6
atomscm %) with solutions of CrO; or CrCl. These
samples were heated in an evacuated quartz ampoule for
24 h at 1350°C and subsequently quenched. The intensi-
ty of the Cr;* EPR spectrum was found to be the same
for all three acceptor dopants.

The EPR and ENDOR measurements were done in a
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FIG. 2. EPR spectra for the three directions of high sym-
metry in the (110) plane: [001], [111], and [110]. The spectra
show a fine structure due to the cubic field splitting. The mi-
crowave frequency was 23.1244 GHz. The EPR lines are la-
beled according to the EPR transitions: 1=|+3)e|+3),
2= +%)<—->| +%), 3= +%)<—>| —%), 4= | —-%)4—»| —%),
and 5= | —2)«>| —2). Centered around each EPR line four
hyperfine lines are visible which are due to the 9.54% abun-
dant magnetic isotope **Cr, which has nuclear spin I=2.
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superheterodyne spectrometer operating at 23 GHz. A
cylindrical TEy,, cavity made of Epibond was used; the
inner wall of this cavity was covered with a thin layer of
silver in which a groove was cut, enabling the wall to act
as a coil for radio frequencies.! Nuclear magnetic reso-
nances were recorded as changes in the dispersion com-
ponent of the EPR signal using double phase-sensitive
detection by modulating the magnetic field with 83.3 Hz
and the radio frequencies with 3.3 Hz. The magnetic
field could be rotated in a {110} plane of the crystal.
The experiment was performed with the sample at
liquid-helium temperature, 4.2 K. Figure 1 shows a typ-
ical recorder trace of an ENDOR spectrum.

III. EXPERIMENTAL RESULTS

The EPR and ligand ENDOR spectra of Si:Cr;* can
be described using the effective spin Hamiltonian

H=gupB-S+1a[S{+S}+8}—1S(S+1)(382435—1)]
+3(S-A; L, —gyunB-L) , 6

with S=2 and I=1. The first term accounts for the
Zeeman interaction between the impurity electrons and
the magnetic field, the second term is the cubic field
splitting, the third term is the interaction between the
impurity electrons and a 2°Si nucleus, and the last term
accounts for the nuclear Zeeman interaction. In Fig. 2
the EPR spectra in three directions of high symmetry
are shown. Centered around each EPR line four
hyperfine lines are visible which are due to the 9.54%
abundant magnetic isotope 3*Cr, which has nuclear spin
I =%. Due to the cubic field term, which is resolved in
EPR, each spectrum consists of 2§ fine-structure lines.
The intensities of these lines are not equal as a result of

different transition probabilities and different popula-
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FIG. 3. Angular dependence of the Si:Cr;* spectrum for ro-
tation of the magnetic field in the (110) plane. The lines are la-
beled according to the EPR transitions 1=|+3)e|+3),
2= |4+ +3) 3=+H)e | =), 4= -1 =3),
and 5= | —3)e| —3).
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tions of these levels. From the intensities and the
changes of intensities with temperature, one is able to la-
bel each line with the mg quantum numbers. A plot of
the positions of the different fine-structure lines upon ro-
tation of the magnetic field is shown in Fig. 3. In the la-
beling as used in Figs. 2 and 3, lines 1-5 belong to the
transitions | +3)e | +3), |+3)eo|+31), | +1)
o|—=1), | =1 | —21), and | —1)e| —1), respec-
tively. In these assignments the sign of the electronic g
factor was assumed to be positive.'?
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Each atomic site around a chromium atom at the
tetrahedral interstitial site has a 4.7% probability of be-
ing occupied by a »Si nucleus with nuclear spin I =1
By applying the symmetry operations of the 43m (T;)
point group on such a 2°Si atom in the crystal, a shell of
symmetry-related sites is generated. In general, such a
shell will contain 24 atoms, giving rise to an ENDOR
spectrum of 224 lines for an arbitrary direction of the
magnetic field B. Because we rotate the magnetic field
in the (110) plane of the crystal, only 2X 12 lines will be
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FIG. 4. (a) Angular dependence of the general-class. hyperfine-interaction tensor with the largest isotropic part, G1. (b) Angular
dependence of the mirror-plane—class hyperfine-interaction tensor with the largest isotropic part, M1. (c) Angular dependence of
the class-3 hyperfine-interaction tensor with the largest isotropic part, 31. (d) Angular dependence of the class-2mm hyperfine-
interaction tensor, T1.



FIG. 5. The position of Cr;* (solid sphere) in the silicon
crystal. All hyperfine-interaction tensors in Table I are given
in this coordinate system.

observed. The angular dependence of a single set of 12
ENDOR lines originating from such a shell is shown in
Fig. 4(a). In the experiment hyperfine interactions with
two such shells, labeled G1 and G2, were observed. If
the 2°Si nucleus is lying in a {110} mirror plane, the
shell in this class contains 12 atoms. An example of the.
angular dependence for such a shell is shown in Fig.
4(b). Three such shells, labeled M1-M3, were found.
The atoms labeled 3 in Fig. 5 form part of such a shell.
When the *Si nucleus is lying on a (111) axis, a shell
contains four atoms. In Fig. 4(c) an angle-dependent
pattern for such a shell is shown; in Fig. 5 the atoms in
three of these shells are labeled 1, 4, and 5. Three shells
of this type were found, with labels 31-33. Finally,
there are also silicon atoms that lie on a twofold rotation
axis through the impurity atom. These atoms form
shells containing six atoms. The interaction with only
one such shell was found [Fig. 4(d)]; in Fig. 5 the sites
for the nearest-neighbor shell in this class are labeled 2.
In total, the nine shells contain
2X244+3%12 +3X44+1X6=102 atoms.

Before starting the ENDOR experiments we made a
computer fit of our EPR measurements to the spin Ham-
iltonian given in Eq. (1), omitting the nuclear terms from
it. We found that g=1.9982+0.0001 and a/h
=90.9+0.1 MHz. Ludwig and Woodbury gave, respec-
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FIG. 6. Schematic level diagram for the Si:Cr; ™ spin system
with =3 and I=1. EPR transitions are indicated 1-5,
NMR transitions are indicated 4 —F. The ordering of the lev-

els corresponds to g >0, gy <0, and 45> 0.

tively, g=1.9978 and a /h=90.42 MHz. The discrepan-
cies are outside the quoted error margins. Our values
were calculated by computer diagonalization of the spin
Hamiltonian, while Ludwig and Woodbury used pertur-
bation theory.

Because the EPR spectrum of chromium has a fine
structure due to the cubic field splitting, it was possible
to determine the absolute sign of the hyperfine interac-
tions. To first order and neglecting the cubic field split-
ting, possible NMR transitions are at

’V=Vz+mSAeﬂ‘/h (ms=—— (2)

5 5
2"--9+f))

where v, = —gyuyB /h is the nuclear Zeeman frequency
and Ay is the effective hyperfine interaction. Since the
ENDOR mechanism is based on spin-relaxation process-
es, the intensity of an EPR transition between two levels
will be affected more by NMR transitions between levels
that are coincident with the levels involved in the EPR
than by those NMR transitions that are not (directly)
coupled. This is schematically depicted in Fig. 6, where
we show a simplified level scheme for an S=3 and I =1
spin system. For instance, it is expected that the in-
tensity of the EPR transitions labeled 2
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FIG. 7. Recorder trace of an ENDOR scan around the nuclear Zeeman frequency v, =7.060 MHz with the magnetic field
B=834.65 mT||[001]. The ENDOR lines are due to the transitions |+3,+%)<|+3,—3), transition B in Fig. 6, and
|+5L+D)e|+5,— 1), transition C in Fig. 6. Most lines including a large unresolved cluster show below the nuclear Zeeman
frequency, only few lines above v,. The former lines correspond to A5 <0, the latter to 4.g>0.
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TABLE 1. Hyperfine parameters of interstitial chromium _in silicon. Units of A (Cartesian tensor) and A4, (principal values) are
" in kHz. fi; gives the direction of the ith principal value of A. The experimental error is 0.5 kHz, except for the tensors 31 and
32, where it is £1 kHz.

>

A

Class mg A i A; n;

G1 +%,-—% —699.4 —171.0 94.1 1 —449.7 [0.402 —0.816 —0.416]

—171.0 —584.7 99.2 2 —509.2 [0.545 —0.152 0.824]

- 94.1 99.2 —553.2 3 —878.0 [0.736 0.558 —0.384]

G2 +%, —% —168.1 —28.8 59.4 1 —118.5 [0.587 —0.804 0.100]

—28.8 —1354 333 —124.0 [0.566 0.495 0.660]

59.4 333 —199.9 3 —260.9 [0.579 0.331 —0.745]

M1 +%, —-% —2264.5 —140.1 —196.8 1 —2124.5 [0.707 —0.707 0.000]

—140.1 —2264.5 —196.8 2 —2763.9 [0.433 0.433 0.791]

= 196.8 —196.8 —2548.4 3 —2189.1 [0.559 0.559 —0.612]

M2 + %, — % —1424.3 —214.2 —84.7 1 —1210.0 [0.707 —0.707 0.000]

—214.2 —14243 —84.7 2 —1677.9 [0.672 0.672 0.313]

—84.7 —84.7 —1314.0 3 —1274.6 [0.221 0.221 —0.950]

M3 —|—-._1,-, —% —514.8 —91.0 —179.6 —423.8 [0.707 —0.707 0.000]

-91.0 —514.8 —79.6 2 —674.9 [0.603 0.603 0.523]

—79.6 —79.6 —491.2 3 —422.1 [0.370 0.370 —0.853]

31 —% —5067.4 —727.7 —727.7 1 —6522.7 [0.577 0.577 0.577]
—72717  —5067.4  —721.7 2 —4339.7 [0.707  —0.707 0.000] -

—727.7 —727.7 —5067.4 3 —4339.7 [0.408 0.408 —0.816]

32 -1 —3269.3  —3323  —332.3 1 —3934.0 [0.577 0.577 0.577]

—3323 —32693  —332.3 2 —2937.0 [0.707  '—0.707 0.000]

—332.3 —332.3 —3269.3 3 —2937.0 [0.408 0.408 —0.816]

33 +1 2167  —109.6  —109.6 1 —24 [0.577 0.577 0.577)

—109.6 2167  —109.6 2 326.3 [0.707  —0.707 0.000]

—109.6 —109.6 216.7 3 326.3 [0.408 0.408 —0.816]

Tl + %, - % 1.0 —2036.6 0 1 2037.6 [0.707 —0.707 0.000]

—2036.6 1.0 0 2 —2035.6 [0.707 0.707 0.000]

0 0 2002.9 3 2002.9 0.000 1.000]

[0.000

(mg=|+23)<|+1)) will change only if the NMR
transitions labeled B and C are induced. This was
verified experimentally by setting the magnetic field on
the EPR line belonging to the transitions labeled 2 in
Fig. 6 and scanning the radio frequencies around the
Zeeman frequency. This frequency lies at about 7 MHz
for a magnetic field of about 825 mT. On EPR transi-
tion 2 only NMR frequencies at

v=v,+1Ag/h and v=v,+3A44/h (3)

are found. In this way the sign of A is determined.
The ENDOR lines for most shells for this EPR transi-
tion were found to lie at frequencies lower than v,, indi-
cating that A.; <O for the corresponding tensors. The
two exceptions were the tensors T1 and 33, for which
A . is positive for most directions of the magnetic field.
In Fig. 7 an ENDOR scan around the nuclear Zeeman

frequency is shown with the magnetic field set to the
EPR line labeled 2 in Fig. 6..

Angle-dependent ENDOR scans were made for the
EPR transition labeled 3 and the NMR transitions la-
beled C in Fig. 6; for the NMR transitions labeled D
only scans were made in the [001], [111], and [110]
directions, except for the tensors 31, 32, and 33. When
making computer fits to the hyperfine tensors, the elec-
tron g value, the cubic field splitting parameter a, and
gn were kept constant. The latter constant was deter-
mined first by making a simultaneous fit to the observed
ENDOR frequencies belonging to mg=1 and — 1 for all
the tensors, except 31, 32, and 33. The value thus found
was gy = —1.1098, in close agreement with literature.'
The results of our measurements are given in Table I,
where also the NMR transitions are indicated that were
used in the computer fits. The tensors and directions of



the eigenvectors in this table are defined in the coordi-
nate system of Fig. 5 and are valid for the following.

(1) The atom on the [111] axis for shells 31-33.

(2) One of the two atoms on the [001] axis for the T1
shell, since no unique assignment of the hyperfine tensor
to one of these atoms can be made.

(3) One of the two atoms (for the same reasons as in 2)
in the (110) mirror plane for shells M1-M3.

(4) One of the 24 atoms in the shells with the lowest
symmetry, G1 and G2.

Typical ENDOR linewidths were on the order of 4 kHz
full width at half maximum, except for the tensors 31
and 32, where the widths were about 8 kHz. The accu-
racy for the fits is on the order of 0.5 and 1 kHz, respec-
tively.

IV. DISCUSSION

Since all transition-metal 4s electrons are supposed to
be transferred to 3d orbitals, the isotropic impurity
hyperfine interaction must originate from core polariza-
tion. The magnitude of the core polarization tends to be
approximately proportional to the amount of polarizing
d orbitals. As mentioned in the Introduction, the reduc-
tion of the hyperfine field at the impurity therefore sug-
gests a considerable delocalization of the wave function.
In principle, this should lead to strong hyperfine interac-
tions with the ligand nuclei.

In a comparable case, Fe;’, a reduction by some 52%
can be calculated when comparing the experimental
value of the hyperfine field to values calculated for the
exchange polarization by Freeman and Watson.! The
spin delocalization as calculated from ENDOR experi-
ments, however, was originally on the order of only 5%
(under less realistic assumptions, at most 20%).° A
more recent analysis yielded a 25% spin density on the
ligand atoms,'” in better agreement with theoretical
data.!! Another similar system is Ti;* in silicon. Here
one calculates a reduction by 74% for the central-atom
hyperfine interaction.!® From ligand hyperfine interac-
tions only about 34% delocalization is found in the one-
electron linear combination of atomic orbitals (LCAQ)
approximation as used by Watkins and Corbett.”’ A
more sophisticated analysis yielded in this case only a
lower limit. A minimum spin transfer of 40% to the sil-
icon lattice was found.!®

For chromium, using the value of the impurity
hyperfine field as given by Watson and Freeman,? a net
spin density for the free ion of |W(0)|%=8.87x10%
m~3 follows. From the experimental data given by
Woodbury and Ludwig, 4 /h=31.99 MHz,! and using

1
="2§%#08#33N#N | w(0) | 2, 4)

one calculates |W(0)|2=4.28x10%* m~3 for Cr;* in sil-
icon. Compared to the free ion the hyperfine field is re-
duced by 52%. Analyzing the present data using the
one-electron LCAO approach, one finds a delocalization
of 22%.

It is understandable that the one-electron LCAO ap-
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proximation is not suited for a system where the
paramagnetism arises from several unpaired d electrons.
As was shown for Ti; *, better results can be obtained by
taking into account the proper more-electron wave func-
tion of the impurity atom and the ligand orbitals that
have the correct symmetry with regard to the point-
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FIG. 8. (a) Orientations of the o and 7 orbitals centered on
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group symmetry of the interstitial T; site in the crystal.
A review of this method is given by Owen and Thorn-
ley,?! who apply it to the effects of covalent bonding on
the magnetic properties of octahedrally coordinated ions
with an unfilled d shell. We have analyzed our data us-
ing this same procedure for the various possible neigh-
bor coordinations in the silicon lattice.

The experimental hyperfine 1nteractlon Ltensors A are
usually split into two parts, —a,l+B,, where
a;=1Tr(A;) is the isotropic part and BL, is a traceless
tensor describing the anisotropic part of A;. The isotro-
pic part is related to the Fermi-contact interaction by

1
a;=—ctuogusgnuy | WO |7, (5)

where | W(0) | ? is the probability of finding the unpaired
electrons at nucleus i. As gy <0 and all the other con-
stants in Eq. (5) are positive, it is expected that a; <O.
In some cases, as we will see, positive values of a; are
found in the experiment. The tensor B,, which
represents the amsotroplc part of A,, is the dipole-dipole
interaction tensor given by

3x;x; _ 8;

rS r3

w> . ©

1 Ho
B;= 2S 47 SHBENHN (‘I’

e =0dy, +1Bi(51—S,+53—54)+

V., =ad,, +1Bi(s; +5,—53—=54)+3Yi(01+0,—03—04)+18,(m ), + 7y — 773,

Y,y =ad,, +3Bi(s1 —s3—s3+54)+37i(01—03—034+04)+ 15;[(
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%'}/,‘(0'1—0'2+0'3—0'4)+%8,~[(

where V¥ is the electron wave function and x;,x i =X,0,2
with respect to a particular site.

Followmg the procedure as outlined by Owen and
Thornley, we write the wave functions as a 3d orbital on
the Cr ion to which a combination of 3s and 3p orbitals
on silicon atoms is admixed. The p orbitals are chosen
as one o and two 7 orbitals on each silicon atom. The o
orbital is pointing towards the impurity ion and the two
m orbitals are perpendicular to each other and to the o
orbital. Using projection operators we calculated the
properly symmetrized linear combinations of o and =
orbitals for each of the four symmetry types of neighbor
atoms.

In the Ludwig Woodbury model the ground state of
Cr;* is t3e? and the wave function can be written as a
single determinant {¥, V¥, ¥, ¥ 2,2¥;,2,2) because the
orbital magnetic moment is quenched. We may thus add
up the separate contributions to the hyperfine interac-
tion from the singly occupied orbitals.

For the class-3 shells the choice of the ligand o and 7
orbitals is shown in Fig. 8(a); o, (k=1-4) is along a
(111) direction and m, and y, are along (211) and
(011) directions, respectively. For the class-3 shells it
follows that

— e+ T —Tax +TMay)

+V 3=y, oy — T3y 74y,
—TM4x ) ’
—Tix +Tox +Tax —Tax) (7

+V§(71y — My — T3y +7T4y)] ’

\I’x2_y2=aldx2_y2+“l{ei[‘/g(ﬂlx + Ty + T3 + Ty )+(‘ﬂ'1y +1T2y +7T3y +‘ﬂ'4y )] ,

)
lII.’:zz-rz_.a d322

With the expressions (5) and (6) and using these five
LCAO wave functions, the Fermi-contact interaction
and the anisotropic hyperfine interaction can be calculat-
ed. In calculating hyperfine tensors for a specific site, we
neglect contributions from the wave functions on other
sites, except for the dipole-dipole contribution due to the
impurity d orbitals, which are considered distant point
charges. For the Fermi-contact interaction we calculat-
ed
e 2S :
For the dipole-dipole interaction tensor in the 77,0
coordinate system, it was calculated that

P2uogupgnmy | s(0) |2 . ®)

B§§=Bnn‘—[—m 52+262)]b

1 ,

—553a 242a)bgy
By=—Bg—B,, , 9

Beg=Bye=Byc=Biy=By=By=0,

_r2+%€,~[(7T1x +1sz +1T3x +7T4x )—\/g(ﬂxy-l-‘ﬂ'zy +7T3y +1T4y )] .

I
with
Ho _
b=%,_gusgnpn(r=),
and

Ho _
bi= o4 ppgyinR

where R is the distance between the impurity and the
ligand atom. The atomic parameters used in the numeri-
cal analysis are |s(0)|2=34.52%10" m~3 (5.115 a.u.73)
and (r ), =18.16x 10 m 3 (2.691 a.u.—3).2

As can be seen from Egs. (8) and (9), it is not possible
to calculate 2(B}+y7+8))+2€?, the transferred spin
density to shell i; it is only p0581ble to calculate the
quantaties 8? and 37, —3( 82+ ?) for the experimental
tensors as a function of 2a + a’z. As contributions
from o and 7 orbitals are found to counteract, only a
minimum value of the transferred spin density (MTSD)
can be deduced. In this procedure we set, for instance,



36 ' ‘ ELECTRON-NUCLEAR DOUBLE RESONANCE OF . ..

1
g%ﬁb

when B e > 0 and

Be=—

1 1

when Bg <0. It is also seen that is it impossible to
discriminate between contributions from the ¢, and e
states. The contributions from the 7 orbitals will be the
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same irrespective of whether 8? is taken zero and €’ is
calculated or vice versa. The factor Z for €? results also
in the factor %, just as for 82. As will be seen, this factor
2 is found for every coefficient occurring in the e-state
wave functions. Still it is possible to set a lower limit to
the value of spin density that is transferred to the crys-

tal.
In the same manner as for the class-3 shell tensors, the
following expressions for the class-2mm shell tensor

were obtained:

1 1
wyz =adyz + ‘/_EBi(SZ —S4 )+ 727/[(0.2_04)"'%81'(77'1): T+ T35 +Tsx +Tex )+%Ei(771y + T3, — s, —Tey ),

1 1
v, =ad,, +7§-B,~(S3 —s5)+ ‘/—Eyi(ag—as)-l-%ai(my + oy + Ty + ey )+ € (T + T, — Mo, —Tex )

1 ) 1 .
\l’xy =adxy + ‘/_EBi(sl _s6)+ szi(ol _06)+%8i(722 + T3, + T4y +Ts, )+%€i(ﬂ-2y + T3y — T4y —Tsx ),

(10)

\I/xz_yzza’dxz_yz-f-%gi(.fz —S3+54 —S5)+%K,-(0'2—0'3+0'4—0'5) ,

, 1 1
\P322-r2=a d3zz_r2+37-§§,-(2s1 —8)—8S3—84—S5 +2S6)+ 2—‘/——3-Ki(201_02_03_04_05+206) .

The definition of the orbitals is depicted in Fig. 8(b).
Using Egs. (5) and (6) one obtains, for the matrix ele-
ments, i

1
B =B, =48} +el—2(y} +3xD)b
1
——25(3a2+2a’2)bdd ’
Bu==Bu IBW ’ (1
By =By =7530i€b ,

For the Fermi-contact interaction one obtains

1
@y =< 3B+ 16D 3nospenpn |50 |2 .

The transferred spin density to shell i equals

(12) -

B+ yi+87+€D)+2(E2+K?)

and can neither be calculated. Again, it is impossible to
discriminate between contributions from the o orbitals
of the ¢, and e states when B,, >0. Nor is it possible to
discriminate between the contributions from the s orbit-
als of the ¢, and e states.

For the class-M shell tensors it is convenient to calcu-
late them in a 7, 7,0 coordinate system. The choice of
the orbitals is shown in Fig. 8(c). The wave functions
are

1
\l‘,yz‘zadyz +3Bi(—ss+56—511+512)+ 27-2‘}’:'(31 —Sy—S3—54—S7+Sg+59+519)+18;(—0s+0s—01+0,)

1 ’ 1
+”—_2‘/§ €(01—03—03—04—07+05+09+0 1)+ 2_‘/5_§i(771x —Mox + M3y + Mgy — Ty +Tgx — Mo - Tiox)

1 .
+ 2‘/5 K,‘(ﬂ']y—77'2y—7T3y—1T4y—1T7y+‘ﬂ'3y+7T9y +7710y)+%}"i(_77'5y+77'6y_77'11y+77'12y‘) ,

) 1
V,x =ad, +1Bi(s3—54+5g _s10)+?‘7§'7/i( —S1—82+S5+S¢+S7+55 =511 —512)+38;(03—044+09—0 )

1 . 1.
+_2\/§ €(—01—0,+05+0¢+07+05—0 1 —0 )+ mgi(ﬂlx +Tox + sy +Tox —T7x —Tgx —T11x —Ti2x )

1 .
—_— 1
+ Ki( =Ty =Ty +Ts, + Mg, + Ty + gy — 11y —T1gy )+ 1A (T3, — T4y +19, — 10, )

2V2
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V. =ad,, +3Bi(s) —s3+57—55)+ ‘/—71( —S4+55—56—S9+810—511+512)+38;(01—0,+07—05)
v 1
2\/ —=¢€ilo3— 04+05—06_09+010"011+012)+2_‘/§§i(77'3fx—'7T4x_77'5x+776x_779x+77'10x+7Tllx_7712x)
1
+'272K,~(1T3y—-1T4y+77'5y—7T6y—-’ﬂ'9y +7TlOy_7Tlly +1712y)+%}\'i(771y_772y +7T7y'—7Tgy) ’ (13)

Vo2 0=a'd s 2+ == 2‘/2 Bil—S3—S4+55+56—59—S10+511+512)

[
+27—2—§i(“03_04+05+06_09—010+011+012)+mpi( — M3y — Moyt Tsy + Ty — Mgy — M0y +T 11y +T12y)

+ T (20 1 + 2090 — T3y — Mgy —Tsx —Tex + 275 +2Mgx — Moy — Tiox — Ti1x — Tiax)

1
2v'6

|\ '(251 +2S2 —S83—84—S5 —‘-36+2S7 +2S8—39~—S10 —S11 —SIZ)

} , 1

1,2.,2=Q d3zz_r2 + 2“ Ve M
1 .

—=&:(2 20,—03—04—05—06+207+203—0¢9—01g—0;—0 1)

+2V3§'( 01+20,—03—04—05—04+207+203—09—019p—0 12

+ '(21T1y +2772y —1T3y —7T4y —7Tsy —7T6y +27T7y +21T8y —77'9y —’TTloy —7Tny —'7T'12y )

1
v‘épt

+—= 2‘/2 Tt(7T3x +7T4x —Tsx —Mex +'”-9x +7Tle —T1x —Ti2x ) .

Using Eqgs. (5) and (6), the following matrix elements are obtained:

1 : ' 1 ,
B,m=é(—%8,2 A — e — 18t + e — Ll — el 4+ 1pH)b —(3‘1 +20")bgq
Big= g (+ 08— 1A+ Jed— 1T 1 — b 2~ LoD+ S (a4 20 19

1
B17§=B§n —S%(a 7» +€K; + é’,p, ,

Bgy=Bpe=Bg=By=0.

The Fermi-contact interactions read . TABLE II. Parameters for the isotropic hyperfine contact
interaction, a, for the ¥Si neighbors of Cr;*, and derived
a;= ——% B2+y, 3,u,?)%,uog,u,BgN,uN | s(0) [ 2. (15 transfer of spin density to ligand s orbitals, per shell. Spin den-
sities for the tensors 33 and T1 could not be calculated because
For a class-G tensor the expressions for the wave func-  positive contact interactions are inconsistent with Eqgs. (8) and
tions ¥ are again lengthier than for the class-M tensors. (12), respectively.
The expression for the Fermi-contact interaction con- Transf
. . . ransfer of
tains five parameters and the expressions for the matrix Tensor a (kHz) spin density (%)
elements B;; contain 15 parameters. The two class-G
tensors do not give a significant contribution to the G1 —612.3 0.32
MTSD as the measured hyperfine interactions with the G2 —167.8 0.09
two shells are rather small. Therefore we will only give ML —2359.2 0.62
the results of the calculated MTSD for these two shells. M2 —1387.5 0.37
In Table II are given the calculated Fermi-contact in- M3 —306.9 0.13
teractions and the derived values of the transferred spin 3 —3067.4 0.45
to the ligand s orbitals. For the tensors T1 and 33 no 32 —3269.3 0.29
numbers for the spin density are given because the posi- ,:ﬁ Igég;

tive values of the contact interaction cannot be analyzed
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FIG. 9. (a) Minimum transfer of spin density (MTSD) for the class-3 tensors as a function of the localization (%a2+ %a'z) on the

impurity atom in lattice-site assignment 1 of Table III. Transfer to o orbitals predominates. (b) MTSD for the class-3 tensors as a
function of the localization (a”+ 2a'?) on the impurity atom in lattice-site assignment 2 of Table III. Transfer to 7 orbitals

predominates. (c) MTSD as a function of the localization (3a”+ Za'?) on the impurity atom, for the class-M tensors. (d) MTSD as
a function of the localization (%a2+ %a’z) on the impurity atom, for the class-G tensors. (e) MTSD as a function of the localization
(3a’+%a'?) on the impurity atom for the 2mm-class tensor and the total MTSD for all nine shells. The solid and dashed lines
refer to assingments 1 and 2 of Table III, respectively.
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TABLE III. Assignment of experimental tensors to atomic sites around the Cr;* impurity. For
the class-M shell tensors are given the angles between the direction of the largest principal values and
lattice vectors. For the class-G tensors are given the angles between the lattice vectors and the direc-
tions of the second largest principal value for G1 and the smallest principal value for G2.

Atom Angle with [Imn]

Tensor Imn Axis (deg)

Gl 204 [0.545, —0.152, 0.824] 11.3

G2 351 [0.587, —0.804, 0.100] 6.2

M1 113 [0.433,  0.433, 0.791] 12.4

M2 331 [0.672, 0.672, 0.313] 4.6

M3 442 [0.603, 0.603, 0.523] 11.9

Assignment 1 Assignment 2

31 .11 222 or 222

32 222 or 222 222 or 222

33 222 or 222 111

Tl 002 or 002

using Egs. (12) and (8).

In order to derive the minimum transfer of spin densi- -
ty for the p part of the wave functions, the measured
hyperfine interactions are corrected for the dipole-dipole
contributions from the electron-spin density on the Cr
ion. These corrections are calculated in a point-charge
approximation. The dipole-dipole contributions can
only be calculated when the experimental tensors are as-
signed to specific lattice sites (shells). In the analysis the
MTSD to the silicon atoms is then calculated as a func-
tion of the density ia’+2a'? on the impurity. As the
contribution from the distant dipole-dipole interaction
can be of considerable magnitude, a different assignment
of tensors to shells can significantly alter the interpreta-
tion of the experimental data.

The only hyperfine tensor which can be assigned with
certainty to a specific shell of atoms is T1. The six
atoms in this shell are the next-nearest neighbors to the
impurity. Using the expressions Egs. (11) the MTSD is
calculated, the result of which is shown in Fig. 9(e). The
experimental observation that this tensor is nearly axial
around the [110] direction makes it comparable to the
tensor T1 that was measured for Ti;*. In the case of
Ti; T (3d?3, electronic configuration ¢3), the admixture of
o orbitals, although formally allowed, is yet suppressed
by symmetry reasons.!® For Cr;* (3d°, configuration
t3e?), also a certain admixture of o orbitals from the e
state would be expected. This would then be compara-
ble to the case of Fe;° (3d8, configuration e?), where, by
symmetry, the transfer of spin density to 7 orbitals is
forbidden, and a (100) axial tensor would be expected;
in experiment the tensor T1 for Fe;° is nearly (100) axi-
al indeed.”” The conclusion that can be drawn from
above considerations is that Cr;* is very similar to Ti;*
regarding the hybridization of the ¢, electrons of the im-
purity with the next-nearest-neighbor ligand 7 orbitals,
while the e electrons hardly hybridize with the o orbit-
als.

For the other three types of shells it is not possible to
assign hyperfine-interaction tensors to specific shells of
atoms in an unambiguous way. A usually adopted -
method is to assign the tensor with the largest isotropic .
hyperfine interaction to the nearest shell of atoms, the
tensor with the second-largest interaction to the second-
nearest-neighbor shell, and so on. One should be well
aware, however, that such a strategy is not supported by
a solid knowledge of the electronic structure of the im-
purity; it is mainly an intuitive choice. The assignment
of tensors to lattice sites can give rather different values
for the MTSD depending on the choice that is made in
this respect, as will be illustrated for the class-3 shells.
The physical interpretation will be, in general, quite
different, depending on the choice..

In Fig. 9(a) the MTSD for the three class-3 tensors is
shown as calculated for the assignment to shells accord-
ing to monotonously decreasing values of the Fermi-
contact hyperfine interaction in the sequence 31, 32, 33
(see Table III). Alternatively, the assignment of tensor
33 with shell 1 (sites 111), tensor 32 with shell 4 or shell
5 (sites 222 or 222, respectively), and tensor 31 with
shell 5 or shell 4, was considered. Results are illustrated
in Fig. 9(b). The picture changes dramatically depend-
ing especially on the assignment of tensor 33. In the al-
ternative assignment it is assumed that the isotropic part
of the hyperfine interaction need not be an indicator of
distance to the impurity, as both admixture and ex-
change polarization may contribute.

In assigning the experimental tensors to lattice sites
for the class-M shells, we used the same procedure as in
the case of Ti;*, i.e., we choose nearby lattice sites in
the (110) plane that make a small angle with the direc-
tion of the largest principal value of the experimental
tensor. In Fig. 10 the principal directions with the larg-
est value for the three class-M tensors are shown. They
all lie in the (110) plane. In Table III the lattice sites
that were assigned to them are given. In the case of ti-
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TABLE IV. Experimental values for the (minimum) spin transfer, theoretical values for the reduc-
tion of the magnetic moment a?, and experimental and theoretical values for the reduction of the cen-
tral ion hyperfine interaction A. Values 1 —a? and 1—A are given to allow direct comparison with the

first column.

Transition Spin transfer 1—-a? 1—A
metal (Experiment 2°Si) (Ref. 14)  (Ref. 12) (Expt.) (Refs. 8,11)
Cr;* >0.22 0.34 0.25 0.54 0.53
Ti; * >0.40 0.58 0.33 0.75 0.78
Fe;° 0.25 0.12 0.29 0.54 0.66

tanium this choice seemed justified because all the ob-
served tensors fell within 10° of the directions to specific
lattice sites in the (110) plane, indicating a predominant
admixture of o orbitals. For chromium this choice can-
not be substantiated as there are only three class-M ten-
sors, one of which is also nearly {(111) axial. Still this
choice is not unreasonable in regard to the earlier-noted
similarities between the two impurities. The resulting
MTSD as a function of the localization %az—f-%a’z on the
impurity is plotted in Fig. 9(c).

For the class-G tensors we looked for nearby lattice
sites whose directions had a small deviation from one of

the three principal directions of the tensor. This result- . -

ed in assigning G1 to site 204 and G2 to site 351. This
means that just as for the class-M shells the admixture
of o orbitals predominates, in contrast with the class-G
shells for Ti; ", which are all nearly (111) axial. These
assignments have to be considered tentative. We did not
pursue other possible choices as these two tensors con-
tribute at most about 2%, irrespective of the assignment
that is made. Resulting values for the MTSD are shown
in Fig. 9(d).

Addition of all the contributions from the different
shells yields the solid line labeled “tot” in Fig. 9(e). This
line intersects the line Dpin=1—(2a’+2a'?) at Dy,
=0.224 (with assignment 1 for the class-3 tensors). This
means that the transferred spin density to the crystal is
at least 22.4% (or that the spin density localized on the
impurity is at most 77.6%). From the reduction of the
core polarization of the impurity, an upper limit to the
MTSD was estimated to be 52%. The MTSD for assign-
ment 2 to the class-3 tensors is about 28%.

In Table IV these experimental results and those for
Ti; T and Fe,° are compared with theoretical calcula-
tions.?> The second column gives the values for the
(minimum) spin density transferred to the ligand atoms
calculated from the experimentally
hyperfine-interaction tensor parameters using the
method described in this article. In the third column are
given theoretical numbers as calculated by Katayama-
Yoshida and Zunger,'>?* and by Beeler et al.'* The first
authors calculated the local magnetic moment for a
transition-metal impurity in a certain impurity orbital
subspace, designated Am. The total magnetic moment
in the whole space is AM=2S. The quantity
1—a*=1—Am /AM as a measure for the delocalization
of the impurity wave function through the crystal is
given in the column below Ref. 12. The second group of
authors calculated the spin density m, in" an impurity

determined-

atomic sphere (muffin tin). The delocalization is now
defined as 1—a’=1—m,/m, where m is the total spin
density of crystal plus impurity. These values are given
in the column below Ref. 14. The differences between
the values found by the two groups are quite large.
Causes can be sought in differences in the computational
techniques used. First, the extent of the impurity space
can be quite different as a result of the different methods
and definitions. Another important difference is that
Beeler et al. used a frozen-core approximation and
could not calculate the self-interaction hyperfine con-
stant, which is the sum of spin densities from core and
valence s orbitals. Experimentally, a marked difference
in localization between e orbitals (Fe;%) and ¢, orbitals is
found. Qualitatively, this is overestimated by Beeler’s re-
sults!* and somewhat underestimated by Katayama- -
Yoshida and Zunger.'>?* The last two columns of Table
IV give the reduction of the central hyperfine interac-
tion, which is defined as A= A4 .,,/ Aree ion- Given values
are ratios of either- experimentally measured impurity
hyperfine interactions® or calculated ones by Katayama-
Yoshida and Zunger!! and free-ion or atom hyperfine
fields as given by Watson and Freeman.! As can be
seen, agreement is very good. We would like to stress

[001]

FIG. 10. Directions of the largest principal values of the
three mirror-plane—class tensors in the (110) plane.
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TABLE V. Experimental hyperfine parameters for the five nearest-neighbor shells of silicon atoms
for interstitial Fe®, Ti*, and Cr*, and theoretically calculated contact terms for the five nearest-
neighbor shells of silicon atoms around Fe®. Units are kHz.

FC,’O
: Expt. Theor. Ti; * Cr;*
Shell Atom no. a a a a
3(111) 1 + 158 + 150 —8124 —5067
3(222) 4 +777 + 670 —1417 —3269
3222) 5 + 3245 + 2790 —749 +217
T(200) 2 —4642 —16660 —852 + 668
M(113) 3 —3870 —3700 —2246 —2359

that the numbers given in the second column of Table
IV refer to values that were derived from measurements
of the spin density on the ligand atoms, while the num-
bers in the other columns refer to values obtained from
measurements and calculations regarding the transition-
metal impurity. In fact, the sums (spin transfer) + o
and (spin transfer) + A should be 1.

Only very recently have results of theoretical calcula-
tions of the magnitude and sign of contact interactions
of silicon ligand nuclei for Si:Fe;° become available.?>2
In Table V these numbers are given together with the
experimentally determined values for the three transition
metals that have been investigated with ENDOR. The
computational method which was used was an ab initio
supercell full-potential linearized augmented-plane-wave
(FLAPW) method. The supercell which was used by
Katayama-Yoshida and Hamada consisted of a cubic
unit cell with the Fe atom in the center, surrounded by
eight silicon atoms just as in Fig. 5. Because of this
small cluster only three “shells” of atoms exist. As a re-
sult of periodic boundary conditions, atoms can be
neighbors of several impurity ions at the same time.
Atoms of shell Si(I) are at position 1 of the nearest ion,
while at the same time at position 3 with respect to three
other ions. The calculated hyperfine contact term for
this shell is thus actually a sum:
a(N=1xa®(1) + 3xa®3). Similarly, atoms of
shell Si(IT) are at position 2 with respect to two ions at
. the same time: a®°(II)=2Xa{2). Atoms of shell
Si(ITI) are at position 4 with respect to four and at posi-
tion 5 with respect to another four ions:
a®(II) =4 X a**"*(4) + 4Xa®"*(5). The individual con-
tributions are next calculated under the assumption

acak:(i) _ aexpt(i)
aCalC(j) aexpt(j) :

In Table V the sign of ¢[3(111)] and the magnitude of
a[M(113)] have been changed with respect to Ref. 25 be-
cause the authors used the experimental hyperfine pa-
rameters as given by Greulich-Weber et al.,'> who did
not determine the sign of the hyperfine parameters and
chose a[3(111)] <0, while it was later found to be posi-
tive.!” It should be noted that, when directly applying
the method as outlined above to the spin-density values

in Ref. 25, we actually arrive at calculated hyperfine
values a which are a factor of 2 smaller than those given
in Ref. 25 and as reproduced in Table V. Although the
size of the unit cell seems rather unrealistic, the calculat-
ed and measured values, except for T(200), are in
surprisingly good agreement. The large discrepancy for
T(200) is attributed by the authors to an artifact of the
small size of the cluster.

The sign of the contact interactions can qualitatively
be understood as follows. For the class-3 shells the im-
purity e states cannot couple with the silicon s orbitals.
Although for Fe,° the ¢, state is fully occupied, there
still is a spin density at the ligand nuclei because the -
spin-up spin densities are slightly more localized than
the spin-down spin densities. Therefore, Katayama-
Yoshida and Hamada®?® conclude that the resulting
spin density will be positive at the nearest-neighbor shell,
giving a small negative a as gy is negative for silicon.
At the shells 4 and 5 the net spin density will be nega-
tive, resulting in a positive a. Although the authors
claim that this is also observed experimentally, the
nearest-neighbor shell has, in fact, a positive a. This
suggests that the spin-up spin density is even more con-
tracted towards the iron impurity, so that even the
nearest neighbors are already in the spin-down tail. In
the case of Ti™ and Cr™, admixture of silicon s orbitals
is allowed and results in (large) negative values for a.
The (small) positive value of a for shell 3(222) of Cr*
indicates a competition between the negative contribu-
tions from silicon 3s orbitals and positive contributions
from silicon core orbitals. In the case of the T(200) ten-
sor .there is a clear difference between Fe;° on one side
and Ti;* and Cr;* on the other. Whereas for Fe a is
large and negative, for Tit and Cr* the contact terms
are small. These observations comply very well with the
fact that for e states admixture of s orbitals is allowed.
Although in ¢, states s admixture is formally also al-
lowed, in the case of Tit and Cr™ it is found that ad-
mixture of s orbitals does not occur. One might expect
that for Cr* a would be more negative than for Ti*, be-
cause for Crt extra admixture from e states would be
expected. This is obviously not the case as the contact
term of Cr* is even positive. The large overall similari-
ty between Cr;* (t3¢?) and Ti;* (¢3) and the differences
with Fe;° (%) demonstrate than the chromium e states
are much less delocalized that the ¢, states. For the mir-
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rorplane class tensors of Fe;%, Ti; ™, and Cr;*, admixture
of 5, 0, m,, and 7, orbitals is allowed. The large nega-
tive values of a for all three impurities indicate a consid-
erable admixture of s orbitals.

V. CONCLUSIONS

In an ENDOR experiment we determined the
hyperfine interaction between the electrons of the singly
positively charged state of interstitial chromium in sil-
icon with nine shells of silicon neighbors comprising 102
atoms. Using an analysis that takes into account all five
valence electrons of the impurity and the symmetry

properties of the impurity in the host crystal, it was pos-
sible to eliminate the apparent contradiction between the
large reduction of the core polarization of the impurity
and the absence of any large hyperfine interactions with
the ligand nuclei. This analysis alone could not account
for the positive sign of the hyperfine parameter a which
occurred for two neighbor shells of silicon atoms.
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